
I V E I T DOCUMENTATION PAGE

REP I AD-A204 828 lb RESTRICTIVE MARKINGS T ? pi
2a. SEC 3 DISTRIBUTION/ AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-89-966

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATIONI (If applicable)
Cornell University (Office of Naval Research

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Department of Computer Science
Upson Hall, Cornell University 800 North Quincy St.

Ithaca, NY 14853 Arlington, VA 22217-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Office of Naval Research N00014-86-K-0092

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
800 North Quincy St. PROGRAM PROJECT I TASK WORK UNIT

Arlington, VA 22217-5000 ELEMENT NO NO. NO ACCESSION NO

11 TITLE (Include Security Classification)

Trace-Based Network Proof Systems: Expressiveness and Completeness

12 PERSONAL AUTHOR(S)
Jennifer Widom, David Gries, and Fred B. Schneider

13a TYPE OF REPORT 13b. TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Interim IFROM TO 214/89 32
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

FIELD GROUP SUB-GROUP verification, concurrent programs, programming logics

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

We consider incomplete trace-based network proof systems for safety properties
identifying extensions that are necessary and sufficient to achieve relative completeness.
We then consider the expressiveness required of any trace logic that encodes these

extensions.

EtECTE •

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
li UNCLASSIFIED/UNLIMITED C SAME AS RPT. C1DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Fred B. Schneider (607) 255-9221

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

Accession For
NTIS GRA&I

Trace-Based Network Proof Systems: Ua c A

Expressiveness and Completeness* Justieation

Jennifer Widom David Gries By.
Distribution/

IBM Almaden Research Center Fred B. Schneider -
650 Harry Road Computer Science Department Availability Codes

San Jose, CA 95120 Cornell University livct and/Or

Ithaca, NY 14853 Dist Special

Abstract

We consider incomplete trace-based network proof systems for safety properties,
identifying extensions that are necessary and sufficient to achieve relative completeness.
W then consider the expressiveness required of any trace logic that encodes these
extensions. /'. ', .Y .- A L, .,7- ,

(.1- QUALIT'f

1 Introduction

In trace-based network proof systems, one specifies and reasons about traces (histories) of
the values transmitted along the communication channels of the networks under consider-

ation. Such proof systems generally allow specifications for networks to be deduced from
specifications for the networks' components. Network proof systems based on first-order

predicates over channel traces are given in [CH81,Hoa85,MC81], but unfortunately these

logics are incomplete [BA81,Ngu85]. Relative completeness can be achieved by permitting

reasoning over the full interleaving of communication events in addition to the individual

channel traces [Bro84,HH83,ZdRvEB851 or by using temporal logic predicates so that the

interleaving is implicitly present in the semantics of the specifications [NDGO86]. Both ap-

proaches introduce more information than necessary, the modifications tend to be extensive

and cumbersome, and the simplicity of the underlying trace logic is lost.

In this paper, a simple but logically incomplete trace-based proof system for safety

properties is defined. This logic is representative of other incomplete trace-based network

proof systems appearing in the literature. Two example networks are presented to show

incompleteness of our logic. Surprisingly, both examples consist of only one process, indi-

cating that while compositionality is an important feature of trace-based systems, network

*This paper is based on portions of Widom's Cornell University Ph.D. thesis. The work was supported
in part by the National Science Foundation under grants DCR-8320274 and CCR-8701103. Schneider is
also supported by the Office of Naval Research under contract N00014-86-K-0092 and by Digital Equipment
Corporation. Any opinions, findings, and conclusions or recommendations expressed in this publication are
those of the authors and do not reflect the views of these agencies.

S92 4 057

composition is not the cause of incompleteness. Our examples suggest two extensions that

are necessary for relative completeness; we show that these two extensions are sufficient as

well. The first source of incompleteness we identify is the inability to state and reason about

constraints on the ordering of network events. The second source is the inability to assert

that the sequence of values transmitted along a communication channel is always a prefix of

that channel's sequence at some later point. We argue that these two properties-the tem-

poral ordering and prefix properties-must be part of any relatively complete trace-based

proof system.

The temporal ordering and prefix properties cannot be expressed in a logic based on

first-order predicates over channel traces. However, they can be expressed using only a

subset of temporal logic, indicating that the full power of temporal logic (or of explicit

reasoning over the interleaving of communication events) is not needed. We explore the

exact expressiveness required of a trace logic if it is to be used for a relatively complete

network proof system. We introduce a hierarchy of subsets of temporal logic and show

that a subset consisting of first-order predicates over traces with a version of the linear-

time temporal Always operator has necessary and sufficient expressive power for relative

completeness.

Section 2 defines the class of synchronous process networks used in the remainder of the

paper. A formal model of computation is introduced to facilitate subsequent reasoning about

network behavior and proof systems. In Section 3, we define Simple Network Logic (SNL),

a trace-based network proof system that captures the essence of most such systems. In

Section 4, we show that SNL is incomplete, define the temporal ordering and prefix axioms,

and prove that they are necessary and sufficient for relative completeness. In Section 5,

we consider the expressiveness required to achieve relative completeness in any trace-based

proof system. We use a logic that permits reasoning over the interleaving of communication

events to construct a formula that exactly characterizes the required expressiveness. A

hierarchy of temporal logic subsets is then defined, along with a mapping from temporal

logic formulas to formulas in the interleaving logic. The mapping is used to identify a

subset of temporal logic with exactly the right expressive power for relative completeness.

In Section 6, we describe how to generalize our model and proof system for hierarchically

structured networks-networks in which component processes may be implemented as sub-

networks. We show that our expressiveness and completeness results are not affected by

this generalization. Finally, in Section 7, we summarize and explain how our results relate

to previous research.

2

2 Process Networks

Consider networks of processes that communicate and synchronize solely by message pass-

ing. Processes and communication channels are uniquely named. Each channel is either

internal or external with respect to a network. An internal channel connects two processes

of the network; an external channel is connected to only one, permitting communication

between the network and its environment. Channels are unidirectional, and communica-

tion along them is synchronous,1 so both processes incident to an internal channel must be

prepared to communicate before a value is actually transmitted. Without loss of generality,

we assume:

" Input or output on an external channel occurs whenever the single incident process is

ready.

• Each message transmission occurs instantaneously.

" Two message transmissions cannot occur simultaneously. Thus, there is a total order

on the communication events of a given computation.

* There is a fixed domain of values that can be transmitted on communication channels.

Processes send and receive values in this domain only.

A network made up of processes P1, P2,..., P,, is denoted by PIlIP21 ... P,, indicating

parallel execution of P1, P2,..., P,,. Fig. I illustrates a network of three processes and six

communication channels. Subsequently, we use the term network to refer to either a single

process or a network composed of several processes. 2

2.1 Model of Computation

To reason about proof systems for networks, we introduce a formal model of network be-

havior. A single point, or state, during the computation of a network is represented by

the histories of the network's communication channels up to that point. (The model does

not include internal process state, since internal computations of processes are unimportant

when reasoning about network behavior, except as they affect values sent and received.) A

'Extension to asynchronous message-passing is straightforward and does not affect our results [Wid87].

'Although we assume here that networks are composed directly of primitive processes, our work easily

generalizes to a hierarchical structure in which processes may be implemented as sub-networks [Wid87].

This generalization is discussed in Section 6.

3

pc

'II

Figure 1: A network of processes

single computation is represented by an infinite sequence of states,3 subject to constraints

on the initial state and between each pair of adjacent states. The behavior of a network is

represented by the set of all sequences representing its possible computations.

We now formalize the model. A trace of a communication channel c is a finite sequence

(c.1, c.2, . .. , c.k) of values that have been transmitted along channel c up to some point in

time. An empty trace is denoted by (). Let N be a networ'. with incident channels cl, C2,...,

c,m. A state of N is a tuple containing a trace for each channel cl, C2,..., cm. A computation

of N is an infinite sequence of states of N such that all channel traces are empty in the

initial state and each subsequent state extends at most one trace of the preceding state by

at most one element (i.e. at most one message transmission occurs between each pair of

states). Thus, an infinite sequence of states can represent a computation iff the following

four computation conditions are satisfied:

CCl. All traces are empty in the initial state.

CC2. Each trace in each state of the sequence is a prefix of the corresponding trace in the

subsequent state.

CC3. The length of each trace in each state of the sequence (except the first) is at most one

more than the length of the corresponding trace in the preceding state.

CC4. At most one trace changes between every state and its subsequent state.

3 We choose only infinite sequences since, for our purposes, any finite sequence can be converted into an

equivalent infinite sequence by indefinitely repeating the final state [MP81,Wid87I.

4

The computation set for N is the set of all computations representing potential execution

sequences of N. 4

We show that our computational model is compositional-the set representing the be-

havior of a network can be constructed from the sets representing the behavior of the net-

work's component processes. Let N be a network composed of P1 , ... , Pn. Let

CS(Pi),..., CS(Pn) denote the computation sets for P,..., ,,, respectively. CS(N), the

computation set for N, can be computed directly from CS(P 1),..., CS(P,) as follows. Sup-

pose K is a computation of N. Define Proj(K, Pi) to be the projection of r onto those

channels of N incident to Pi; that is, Proj(K, P) removes from the states of x all traces of

channels in N not incident to Pi. CS(N) is the set of all computations r built from possible

states of N such that

* Pro)(K, Pi) E CS(Pi), i = 1..n, and

" P satisfies conditions CC1-CC4 above.

Informally, then, the computations of N are all possible well-formed combinations of the

computations of N's component processes in which communications on shared channels

agree.

3 Simple Network Logic

We now introduce a formalism, Simple Network Logic (SNL), for specifying and verifying

safety properties [Lam77] of networks of processes. SNL concisely captures the essence of

most trace-based proof systems.

A specification is a first-order predicate over channel traces; it is intended to be satisfied

throughout every execution of the network it specifies [CH81,Hoa85,MC81] .5 A channel

name c appearing as a free variable in a specification represents the trace of c. We use Icl

to denote the length of c and cl C c2 to denQte that trace cl is a prefix of trace c2.

A specification for a network N is a predicate 0 over the traces of N's communication

channels. (The only free variables permitted in specifications for N are those corresponding

4 Our definition allows arbitrarily many (adjacent) repetitions of any state in a computation sequence,

producing a very large computation set for a network. In particular, if a given computation is in a compu-

tation set, then so is that computation with any state repeated once, repeated twice, repeated three times,

etc. Permitting this repetition facilitates subsequent definitions and proofs without affecting the usefulness

of the model.

'Actually, in [MC8I], specifications consist of predicate pairs, but for our purposes it is adequate to

consider only single predicates that remain invariant throughout a computation [Wid87].

5

to channels of N.) We say that N satisfies 4), written N sat 4), if, at every point during any
computation of N, the traces of values transmitted on N's channels satisfy 0. For example,
consider a process (or network) N that repeatedly reads an integer from channel cl and
sends its successor on channel c2. This behavior can be specified in SNL as

N sat (Icll- < Ic2l < Iell) A (Vi: I < i < Ic21: c2.i = cl.i+ 1).

Some network proof systems provide facilities for constructing specifications for sequen-
tial primitive processes [CH81,Hoa85,ZdRvEB85]. In others, it is assumed that existing
logics for sequential programs can be used for this or that specifications for primitive pro-
cesses are given [Jon85,MC81,NDG086]. Without loss of generality, we adopt the latter
approach. Thus, we are interested only in deducing specifications for a network from spec-
ifications for its component processes. Consequently, we assume that the axioms of SNL
contain all formulas P sat 4), where P is a primitive process and 4' is a valid specification
for P, i.e. 0 is satisfied by every execution of P.

Specifications for networks can be derived from specifications for their component pro-
cesses using the following inference rule of SNL.

Definition 3.1 (Network Composition Rule)

PI sat 01, P2 sat 02, ... , Pn sat O)n

PIIP 2II"IIP sat Aii
Conjoining process specifications using this rule results in "linking" any shared channels in
network N because in Ai 4)i all c's (say) denote the same channel trace.

We also need a rule for deducing valid specifications for a network from other valid
specifications, since several valid specifications may exist for a given network. For this, we
use the SNL Consequence Rule:

Definition 3.2 (Consequence Rule)

N sat 4)1, 0)1 = 02

N sat 42

(Note that this rule relies on the validity of 4)1 => 02, which is a formula of the underlying
trace logic. This aspect of the proof system is discussed below.)

These two rules, or variants thereof, form the the basis of most trace-based systems we
know of, including [CH81,Hoa85,MC81,NDG086,Zwi88.

6

3.1 Soundness and Completeness

We can use the computational model introduced in Section 2.1 to prove that SNL is

sound [Apt8ll: if N sat 0 is a theorem of SNL, then 0 is indeed valid for network N.

To do so, we must first define validity of specifications with respect to computations in the

formal model. Recall that for a network N, CS(N) denotes the set of all computations

corresponding to N's possible behaviors. A specification 0 is valid for N iff 4 is true in

every state of every computation in N's computation set.

Definition 3.3 (Validity of Specifications) Specification 4) is valid for network N iff

K.i 4) for all r E CS(N) and i > 0, where

K K = (.0, r.1, r.2,...);6

* i.i 1= 4) holds iff the channel traces in r..i satisfy 4). [

Using this definition we establish the soundness of SNL.

Theorem 3.4 (Soundness of SNL) Let N be a network and 4) a specification such that

N sat 0 is a theorem of SNL. Then 4 is valid for N.

Proof: See appendix. (9

We would also like SNL to be complete: if any specification 4 is valid for a network N,

then N sat 4) is provable in SNL. However, an additional assumption must be made. A

specification for a network is derived from specifications for its component processes using

the Network Composition Rule. If the given process specifications are valid but too weak,

then a valid network specification might not be provable. What we really want to know is

whether N sat 4 can be proven when the specifications for N's component processes are as
"strong" as possible [Jon85,NDG086].

Definition 3.5 (Precise Specifications) A specification 4) is precise for a network N iff

1. 0 is valid for N, and

2. if r. is any computation7 containing traces for the channels in N and r4.j- for all

ji >_0, then KECS(N). 0

ONote that indexing of computations begins with 0 while indexing of channel traces begins with 1. This

notation facilitates subsequent definitions and proofs.

'Recall from Section 2.1 that a computation is an infinite sequence of states such that the initial state

contains only empty channel traces and each subsequent state extends at most one trace of the preceding

state by at most one element.

7

P
c d

Figure 2: Simple network

Thus, a specification is precise if it is valid and if every computation satisfying the specifi-

cation is a possible computation of the network being specified. For completeness, we are

interested in proving N sat 0 whenever 0 is valid and the specifications for the processes

in N are precise.

The SNL Consequence Rule relies on the validity of formulas in the specification language

of SNL. SNL specifications can involve elements of the data domain from which messages

are drawn, sequences of such elements (the channel traces), and lengths of sequences. Since

arithmetic itself is incomplete [Sch67], a valid assertion might not be provable in any logic.

Therefore, when designing a program proof system, one aims for relative completeness (as

in [Coo781): Assuming that one can prove any valid formula of the underlying logic-which

in this case is a trace logic that includes predicate logic, arithmetic, and the data domain

of the network being considered-is the proof system complete?8 SNL is not relatively

complete, as we now show.

4 Incompleteness of Simple Network Logic

We give two examples to show the incompleteness of SNL. Each example illustrates an

inherent property of network behavior that cannot be expressed in SNL but is necessary for

relative completeness in a trace-based proof system.

4.1 Temporal Ordering Property

Consider the single-process network of Fig. 2. As an informal description of process P we

are given four facts: (1) P reads at most one value from channel c; (2) P reads at most one

value from channel d; (3) P reads a value from c before reading from d; (4) P reads a value

from d before reading from c. By direct translation, a formal specification is

P sat 01: Icl _ 1 A Idl ! 1 A Id !S Id A cl :d. (1)

$Most proof systems make assumptions about both the provability of statements in the underlying logic

and the expressiveness of the specification language involved. This is sometimes referred to as Cook corn-

pleteness [Apt81,Coo78j. We. too, have made an expressiveness assumption in our supposition that precise

specifications for primitive processes can be written in SNL. The reader might convince himself that our

language is powerful enough to express precise specifications for a large class of processes.

8

Let the data domain for this network be {a}. The following specification is valid for P and

is equivalent to (1):

P sat 2:(c () A d=O V (c =(a) A d =(a)) (2)

P is always in one of two states: either no values have been read from c or d or a value a

has been read from each. However, since two values cannot be transmitted simultaneously

(condition CC4 from Section 2.1), P can reach a state in which (c ((a) A d = (a)) only by

being in a state in which either (c = (a) A d =)) or (c = () A d = (a)), neither of which is

permitted by specification (2) (or specification (1)). Thus, P will never read a value from

either c or d, so a third valid and equivalent specificatioi: for P is

Psat 03 :c= () A d: (). (3)

All three specifications are valid and, in fact, precise. Any computation satisfying 41,

02, or 03 is a computation of P-no values are ever read on c or d. However, consider

an attempt at proving (3) given precise specification 02 (say) of (2). Since there is only

a single process, the Network Composition Rule is irrelevant-the only SNL inference rule

applicable is the Consequence Rule. But 02 =* 03 does not hold. Hence (3) is unprovable

from (2), even though it is valid.

We need a way to formalize the reasoning about event ordering used to obtain specifi-

cation (3). It must assert the following property.

Definition 4.1 (Temporal Ordering Property) Suppose cl and c2 are channels of a

network N, cl.z and c2.y are transmitted as a result of distinct coununication events, and

in any computation of N

1. cl.: is transmitted before c2.y, and

2. c2.y is transmitted before cl.z.

Then (Icl[< z A 1c2 < y) holds throughout any computation of N-neither message is

ever transmitted. M

Formalizing this property would allow 03 to be deduced from 02, making (3) provable

from (2). Unfortunately, the Temporal Ordering Property cannot be expressed in the trace

logic underlying SNL. This is discussed further in Section 4.4.1 and is proven in Section 5.

4.2 Prefix Property

Consider the network of Fig. 3. Suppose {a, b} is the data domain and let a precise specifi-

9

P
C-<

Figure 3: Very simple network

cation for process P be

Psat 04 :c=) V c= (a) V c= (b,a). (4)

Since P sends one value at a time on channel c (condition CC3 from Section 2.1), disjunct

c = (b, a) can never hold. (It would hold only if c = (b) held first, and this is prohibited by

4)4.) Therefore (4) can be simplified to

P sat Os: c C (a). (5)

However, 04 does not imply 05, so (5) cannot be proven from precise specification (4). Here

we need the following property.

Definition 4.2 (Prefix Property) For any channel c and integers 0 < z y, the trace

of c after z values have been transmitted is always a prefix of the trace of c after y values

have been transmitted. 0

By using this property in conjunction with 04, we could eliminate disjunct c = (b, a) and

obtain (5). Like the Temporal Ordering Property, however, the Prefix Property cannot be

expressed in the trace logic underlying SNL.

4.3 Incorporating the Properties in SNL

Consider any SNL proof that establishes N sat 4 for a network N = Pill ... lfPn. As

axioms, we are given P sat 4),..., P,, sat 0, , where 0,..., 4,1 are precise. The first rule

to be applied in any such proof is the Network Composition Rule, so we immediately infer

N sat As 4i. All remaining steps in the proof have to be applications of the Consequence

Rule. By transitivity of implication, any string of Consequence Rule applications can be

collapsed into one, so N sat 4 is provable iff Ai Oi => 4 (a formula of the underlying trace

logic).

By the following theorem, we know that specification A, 4, is precise for N-the conjunc-

tion of precise process specifications results in a network specification that is also precise.

(A similar theorem for a different logic is proven in fNDG086].)

Theorem 4.3 (Preciseness-Preservation) Let 4, be a precise specification for P,

< i n, and let N = PdI "". P,• Then A, 0, is a precise specification for N.

10

Proof: See appendix. 0

Thus, our proof system would be relatively complete if 01 => 102 whenever 01 is a precise

specification for a network N and 02 is a valid specification for N. However, the examples

given in Sections 4.1 and 4.2 illustrate that this implication does not always hold.

To obtain a relatively complete system, the implication in the hypothesis of the Conse-

quence Rule must be modified so that all valid specifications can be deduced from precise

specifications. We do this by strengthening the antecedent of the implication-adding a set

of axioms such that if A (say) is the conjunction of axioms in the set, then (01 A A) => 02

whenever 01 and 02 are precise and valid, respectively, for a given network. The Temporal

Ordering and Prefix Properties are the basis for such a set of axioms.

4.4 Temporal Ordering and Prefix Axioms

We now prove that axiomatizations of the Temporal Ordering and Prefix Properties are

necessary and sufficient for deducing 02 from 01 whenever 01 and 102 are precise and valid,

respectively, for a given network. There is a fundamental difference, however, between any

axiomatization of the Temporal Ordering (or Prefix) Property and specifications 01 and

02: event ordering is considered with respect to an entire computation, while 01 and 02 are

considered with respect to the individual states of a computation. Since (01 A A) =: 02

must be considered with respect to entire computations, we introduce an operator 0, which

converts specifications to being over computations: o 0 is valid for a computation iff 0 is

true in every state of that computation. 9 That is:

. =o iff .iJ= 0 for all i >0

(Note that by Definition 3.3 of validity of specif cations, specification 0 is then valid for a

network N iff . J= C 0 for every r in the computation set of N.) Using C1, we modify the

Consequence Rule as follows.

Definition 4.4 (Modified Consequence Rule)

Nsat 01,(040, A A) 0 002

N sat 402

Now we consider the axioms comprising A.

'This is a weakened version of the "always", or "henceforth", operator (also o) of temporal logic [MPSI,

MP82], since 4 cannot contain other temporal operators. Temporal operators of varying strengths are

discussed briefly in Section 4.4.2 and at length in Section 5.

11

4.4.1 Temporal Ordering Axiom

The Temporal Ordering Axiom will formalize the Temporal Ordering Property. Suppose

some communication cl.z must happen before some c2.y. Then 0 (IclI < z =* Ic21 < y).

This assertion captures ordering of communication events for any channels ci and c2 and

any indices z and y, even if z = y or cl and c2 are the same channel. We are interested

only in ordering of distinct events, so the case in which cl.z and c2.y are produced by the

same event (i.e. z = y and cl and c2 are the same channel) is not of interest. Now, if

0 (1c2l < y => Icil < z) holds as well (with cl and c2 distinct and z X y), then neither cl.z

nor c2.y can ever occur, equivalently: o (Ic1l < z A 1c21 < y). Hence we state the Temporal

Ordering Axiom as follows.

Definition 4.5 (ORDERING) If cl and c2 are channels, z > 1 and y 2 0 are integers,

and either z $ y or cl and c2 are distinct, then 10

0 (Icdl < x * Ic21 < y) =: 0(1cil < x A Ic21 < y).

Allowing y = 0 permits the assertion that an empty channel trace temporally precedes all

communication events on that channel.11 We disallow z = y = 0, however, since this results

in a pathological situation in which the antecedent of the implication is trivially true but

the consequent is trivially false.

We now prove soundness of ORDERING with respect to our computational model.

Theorem 4.6 (Soundness of ORDERING) If r is a computation (recall Section 2.1)

then K [- ORDERING.

Proof: See appendix. 0

4.4.2 Prefix Axiom

To formulate an axiom for the Prefix Property, we introduce a more powerful version of

0 in which o may be applied to formulas that themselves contain o's. (This is the usual

linear-time temporal logic interpretation for C [MP82].) Now, o 0 is valid for a computation

iff 0 is valid for every suffix of that computation:

= o0 iff (.i, Kc.(i + 1), r..(i + 2),...) = € for all i > 0

"Technically, this is an axiom scheme rather than an axiom, since substitution for mete-symbols cl, c2,

z, and y is permitted.

"Suppose, for the sake of a contradiction, that c is non-empty in the initial state of some computation

satisfying ORDERING. Then O(1cj < x < Icl < 0) for some z > 1. However, o(Icl >_ 0), go the conclusion

of ORDERING does not hold.

12

When 4) contains no O operators, (K.i, K.(i + 1), K.(i + 2),...) =) is usually interpreted

to be true iff 0 is true in the first state, i.e. K.i 1= 4). (For more detailed and rigorous

discussions of the semantics of temporal operators, see e.g. [MP82,Wid87].)

The Prefix Axiom can be stated using 0 as follows.

Definition 4.7 (PREFIX) If c is a channel, z _> 1 is an integer, and v is a value in the

data domain of messages, then

(C.= v =. 0(c.z=v)). ta

This axiom (scheme) asserts that once a value has been transmitted as c.z, c.z remains

unchanged. This is equivalent to the Prefix Property as stated in Section 4.2.12

Theorem 4.8 (Soundness of PREFIX) If ic is a computation then K 1= PREFIX.

Proof: Let . be any computation. Then r satisfies condition C2 (Section 2.1) and PREFIX

follows directly. 0

4.4.3 Necessity and Sufficiency of ORDERING and PREFIX

By letting A = ORDERING A PREFIX, we can prove that if 4)i is a precise specification

for a network N and 42 is a valid specification for N, then (0 01 A A) =:, o 2 (from the

hypothesis of Modified Consequence Rule 4.4) holds. Thus, ORDERING and PREFIX are

sufficient for achieving relative completeness. In addition, we will argue that ORDERING

and PREFIX are necessary-if either axiom is removed from A then there is a network N

with precise and valid specifications 4)1 and 02 (respectively) such that o 0)i and A do not

imply C3 42.

We begin with a key lemma.

Lemma 4.9 Let r be any infinite sequence of states. r represents a computation if"

r [ORDERING A PREFIX.

Proof: See appendix. W

With this lemma in hand, we can easily prove that our two axioms are sufficient for relative

completeness.

12A different axiomatisation of the Prefix Property can be given using the "next" operator of temporal

logic in addition to 0 [WGS87]. The definition given here, however, shows that the Prefix Property can

be encoded using only 0 operators. This is of importance in Section 5, where we consider the minimal

expressiveness required of any trace logik used as the basis of a relatively complete proof system.

13

Theorem 4.10 (Sufficiency of the Axioms) If 01 is a precise specification for network

N and 02 is a valid specification for N, then (0 01 A ORDERING A PREFIX) =: 0 02.

Proof: We show that any infinite sequence of states K satisfying o 01, ORDERING, and

PREFIX also satisfies 0 02. Since r J= ORDERING A PREFIX, by Lemma 4.9 we know

that r is a computation. By Definition 3.5 of preciseness, since rK 1=o 01 and 01 is precise,

. E CS(N). By validity of 02, every r E CS(N) satisfies 0 02. Hence r. satisfies 0 02. 0

Thus, with ORDERING and PREFIX, we ensure that any valid network specification is

implied by a precise specification for the network; by Preciseness-Preservation Theorem 4.3,

a precise network specification is obtainable from precise specifications for the network's

component processes. That ORDERING and PREFIX are necessary (as well as sufficient)

for the implication to always hold is shown in the following theorem.

Theorem 4.11 (Necessity of the Axioms) There exist networks NI, N2, and N3, with

precise specifications Of, OP, and OP (respectively) and valid specifications OY, OV , and

O' (respectively), such that

1. -' ((0of A ORDERING) => 0O);

2. - ((o Of A PREFIX) =, o or);

3. - (c] OP = O

Proof:

1. Let NI be the example network of Section 4.2.

2. Let N2 be the example network of Section 4.1.

3. Follows directly from 1 and 2. 0

5 Strengthening the Proof System

We have demonstrated that an axiomatization of the Temporal Ordering and Prefix

Properties is necessary and sufficient for relative completeness of SNL. However,

ORDERING A PREFIX is not the only way to formalize the properties of computation that

must be encoded in the logic. From the proof of Theorem 4.10, we see that the function

of ORDERING and PREFIX is to characterize legal network computations, distinguishing

those states that are reachable by a computation from those that are not. Thus, we are

interested in the expressiveness required of trace logics that encode the notion of a legal

network computation.

14

We formalize this requirement by analyzing the relationship between precise and valid

specifications. Suppose 01 is a precise specification for a network N. Then, by Definition 3.5,

a state is reachable by N iff it is reachable by a computation that always satisfies 01 . Now,

by Definition 3.3 of validity, a specification 02 is valid for N iff it is satisfied by every state

reachable by N. By transitivity, then, 4'2 is valid iff it is satisfied by every state reachable

by a computation that always satisfies 01 . That is:

Observation 5.1 A specification is valid for a network iff it is satisfied by every state

reachable by a computation that always satisfies a precise specification for that network.

Formalizing this observation results in a relatively complete proof system. (One such formal-

ization is implication (0 01 A A) => 0 02 of Modified Consequence Rule 4.4.) We establish

bounds on the expressive power required of any trace logic that formalizes Observation 5.1.

Let 0 range over trace logic formulas (i.e. over formulas in the specification language of

SNL). Suppose K(0) is a formula in some logic L such that, for any 0, a state satisfies K(O)

iff the state is reachable by a computation that always satisfies '0. Consider the following

Generalized Consequence Rule:

Definition 5.2 (Generalized Consequence Rule)

N sat 01, K(01) => 02

N sat 02

where K(01) => 02 is a formula of logic L. By Observation 5.1 and the definition of K(O),

if 01 and 02 are precise and valid specifications, respectively, for N, then K(01) :, 0.

Therefore, incorporating the Generalized Consequence Rule yields a proof system that is

complete relative to L. Our goal is thus to isolate the power required of a logic to express

formula K(0)-a formula satisfied by exactly those states reachable by a computation that

always satisfies 0.

5.1 Extending Trace Logic

Formula K(O) can be expressed in an extended trace logic in which, in addition to reasoning

over traces of individual connunication channels, some explicit reasoning over computa-

tions is permitted. Without loss of generality, suppose that the communication channels of

all networks under consideration are cl, C2,. ., c,, and let the data domain of transmittable

values be a set V. Recalling the computational model of Section 2.1, a state can be repre-

sented by a tuple j = t] of channel traces, where ti is the trace of c,, 1 < i < m.

A computation up to some point in time is represented by a finite sequence of such tuples:

15

(to, t, -). (Since we are interested only in states reachable by computations, we need
not consider the infinite sequences representing full computations.)

It is not surprising that K(O) can be expressed in a logic that allows quantification over
finite, arbitrarily long, sequences of tuples-the reachable states can be explicitly generated.
Let

0 [i!/t'] denote SNL specification 0 with channel trace variables cl,...,mc replaced by
traces ti ,...,t; 13

* [t' / t-.(v)] denote tuple F' with trace ti extended by vauevEV.

We then define K(0) as follows.

Definition 5.3 (Formula K(O,) in Extended Trace Logic)

KBTL(O)

(3(tO, t, ... ,Tn-): There ezists a sequence of states such tat:

TO = .A..., 01 A in the first state all traces are empty,
in = [Cl, .. , Ck] A

(Vi: 0 < i < n: 0[d/ t]) A 4 is satisfied in every state,

(Vi: 0 i < n: and in every pair of adjacent states:

t = t V either the states are identical or

(3j, v: 1 < j :_ m, v E V: the second state eztends ezactly one trace
ti+l = ~~[t / t,'(v)]))) of the first state by ezactly one element.

The free variables of KsTL(0) are channel trace variables cl, ... , c". As illustrated by the
annotation, KTL(O,) is satisfied by exactly those states reachable by a computation that
always satisfies 4. Therefore, Definition 5.3 of K.TL(O) could be used in the Generalized
Consequence Rule to obtain relative completeness.

5.2 Using Temporal Logic

Linear-Time Temporal Logic (TL) is a formalism for reasoning over an implicit sequence of
states [MP82]. TL is less complicated and more appropriate than the Extended Trace Logic
of Section 5.1 for expressing and reasoning with formulas such as K(O). As indicated by
the definitions of ORDERING and PREFIX given in Sections 4.4.1 and 4.4.2, however, full
temporal logic is more powerful than is needed to express K(40). We therefore introduce a

13In general, we use X[old/new] to denote entity X with all free occurrences of item old replaced by item

new.

16

number of temporal operators that can be used to define subsets of TL. We then isolate a

TL subset that is necessary and sufficient to express K(O) and is appropriate for use as the

basis of a relatively complete trace-based proof system.

We begin with a version of TL that extends the trace logic of SNL with three standard

temporal operators:

" The Always operator, 0. Informally, o 0 is valid iff TL formula 0 is valid at the

current point in time and at every point in the future.

" The Next operator, o. Informally, o i is valid iff TL formula 0 is valid at the next

point in time.

" The Until operator, U. Informally, i/ U 02 is valid for TL formulas t'i and 42 iff 02

is valid either at the current point in time or at some point in the future, and ip is

valid at all points from the current point to the point at which 12 becomes valid.1 4

(We omit the Eventually operator, C, since C is the dual of 0: for any TL formula ,

0 41# -0-iP and <>p * -o-'.)

TL formulas are interpreted on a network coniputation by considering a sequence of

states as a description of successive points in time. The temporal operators are interpreted

in the obvious way, according to the informal descriptions above [MP81,MP82. (See, e.g.,

the definitions for o given in Section 4.) Our original definition of o, given in Section 4.4, is

for trace logic formulas that do not contain temporal operators. In Section 4.4.2, we consider

a version for formulas containing other o's. The weaker version of o is used to define the

Temporal Ordering axiom, while the stronger version is needed to define the Prefix Axiom.

In general, allowing nested temporal operators yields significantly more expressive power

than restricting temporal operators to operate over non-temporal formulas.15 Hence, we

also consider use of an additional set of temporal operators that operate over trace logic

formulas only:

" the Restricted Always operator, -

" the, Restricted Next operator, 6

" the Restricted Until operator, U1

'4 Some definitions of TL instead use a Weak Until operator, in which 103 need not ever become valid as

long as 10 is always valid. In the context of TL, the two versions of U are expressively equivalent [WolSl].

15 For example, consider TL formula 0(, =(#* (o 1 V o 03)), which asserts that whenever 10i is valid,

either 12 is valid thereafter or 03 is valid at the next point in time. This property cannot be expressed using

temporal operators only over first-order formulas.

17

It is easy to show that these operators are strictly weaker than their fully temporal coun-

terparts, which we refer to as Unrestricted operators.
We want to isolate the TL subset that is both necessary and sufficient to express formula

K(O). Various subsets of TL can be constructed by choosing different subsets of the six

temporal operators; for example, trace logic with o and 5 is a (strict) subset of TL. Suppose

we give an interpretation for TL formulas in the Extended Trace Logic (ETL) of Section 5.1,

i.e., we define a mapping M from formulas in TL to formulas in ETL. Then we can establish

expressiveness bounds by proving that certain sets of temporal operators are required in

any TL formula that is equivalent (through the mapping) to Definition 5.3 of K'TL().

Mapping M is derived directly from the definitions of the temporal operators. If OIL is

any formula of temporal logic, then M 10TLj is an ETL formula containing one free variable,

o,, which ranges over infinite sequences of tuples (representing states). The mapping is

semantics-preserving, in that a sequence o,' satisfies formula 1TI iff substitution [o/o 1

satisfies formula MJITL. 16 Using such a mapping, TL formula PT, is said to be equivalent

to ETL formula AP'ITL iff MIOTLI VYBTL.

The full definition of M is given in Table 1. o, = (o.0, o.1,o.2,...), and o[i..] denotes the

Suffix of a starting at or.i (i > 0). M is defined inductively on the structure of TL formulas,

and parallels the usual interpretation of temporal logic [MP82]. Note that a mapping T

from TL terms to ETL terms is also needed. We have omitted f, U, and U, since the

mappings for these operators are identical to the mappings for 0, o, and U, respectively.

To consider equivalence between K.TL(O) 'and formulas mapped from TL to ETL,

KBTL(O) must be redefined so that its existentially quantified sequence of states is rep-

resented by a free variable a. Define K,(O) as follows.

Definition 5.4 (Modified K(O) in Extended Trace Logic)

Ko(O) =A
=,. A0.-)

(Vi: 0 < i: O[d/a.i]) A

(Vi: 0 < i:

0.(i + 1)= O.i V

(3j, v: 1 <j < m, v E V:
o.(i + 1) = ar.i[(o.i)3/(ar.i) 1 .V])

The correspondence between K ,(O) and K.T,.(O) (Definition 5.3) should be clear. It is easily

6 A rigorous proof of semantics-preservation requires formal semantics for TL and ETL. We have avoided

giving such here, referring the interested reader to [MP82,Wid87].

18

Table 1: Mapping M from TL formulas to ETL formulas

M~p(t1,...,t,) = p(Tt11,..., Ttd) p a predicate,

tl,...,t, TL terms
MIJ) V I2 = MI4, 1 V M4,21 4,1 and 0,2 TL formulas
MI-01] = -'MHO 4 a TL formula
ME(3z:: ip)] = (3k::M4M ,[z/k]]) ip a TL formula,

k a constant in V
M04 10 = (Vi: 0 < i: M4,J[ff/o[i..]]) 4, a TL formula
MiOM /[1..]] 4, a TL formula
M4 p4 U 021 = (3i: 0 < i: (Mi4P 2 [0/O'[i..]]) A

(Vj: 0 < j < i: M Vj[o/o[j..J)) 4,I and 0,2 TL formulas

T[k]j = k k a constant in V
Tici] = (o'.O)i ci a variable in {cl,...,cCM}
TI f(t 1 ,.. .,t) = f(TYtI,.. .,- tj) f a function,

t1 ,. .,tn TL terms

verified [Wid871 that for any SNL specifications 01 and 0'2,

KRTL(4)) : 02 iff Ka(01) => (Vi: 0 < i: S2[Z/oa.i]).
By the definition of K,,(4)), we see that any TL subset that can express K,(4) can also
express (Vi: 0 < i: 0 2[Z/q,.i]). Therefore, we can revise the Generalized Consequence Rule
to use the equivalent implication K,(01) => (Vi: 0 < i: 02[d/Oi]) adopting Definition 5.4
of K,(O) as our measure of the required expressiveness.

5.3 Expressiveness Bounds for Relative Completeness

We want to determine which combination of the six temporal operators defined in Section 5.2
is necessary and sufficient in any formula K,,(O) such that M[[KL(O)j €. K,(O). By the
definition of mapping M on formulas of the form tP, U 4,2, and by the fact that K,(O)
contains no eventuality components of the form (3i: 0 < i: f (.i)), we see that operator U
is not needed in any TL formula KTL(O) such that MAKTL(O)]j € K,(O). Similarly, there
is no need to consider operator U. Therefore, the TL subsets of interest correspond to the
subsets of {O, o, , U}. The partial ordering of the expressive power of these subsets is given
in Fig. 4.

For each non-empty subset S in Fig. 4, let Trs denote the trace logic of SNL extended
to include the operators in S. For example, subset 4 of Fig. 4 is denoted by Tro and

19

Expressive

Not
-" Expressive

7: , / U8: o Enough

4:." 5: U-3, 36

1: No Temporal Operators

Figure 4: Temporal logic subsets and expressiveness bounds

subset 8 by Trio. We prove that Tro has the necessary and sufficient expressive power to
encode K,(O). We show that Tr0 is sufficient by using trace logic with Unrestricted Always
operators (only) to write a formula equivalent to K,(O). (Not surprisingly, this formula is
based on axioms ORDERING and PREFIX.) We then prove that the subset is an absolute
lower bound: each subset lower than or incomparable to Tro (subset 4) in the hierarchy of
Fig. 4 is not expressive enough to encode K0 (O). This is proven by showing that no formula
equivalent to K,(O) can be expressed in Trio (subset 8). Consequently, all subsets except
4, 7, and 9 are insufficient. The resulting division of the subset hierarchy is shown in Fig. 4.

5.3.1 Sufficiency

We give a formula K 0 (0) in Tra such that MKo(O)i .* K,(O):

Definition 5.5 (Formula K(0) in SNLo)

#a(o) =

O A

(Vij,z,y:l <i< m,l<j!_m,l z,O<y,i j V z y:

o (IclI < z * Ic,I < y) * o (cil < z A Icjl < y)) A
(Vi,z,v:l <i< m, i <z, vE V:

O (c,.Z = V => D (c,.z = v)))

20

The first conjunct of Ko(O) restricts state-sequences satisfying Ko(O) to always satisfy

0. The second and third conjuncts encode the Temporal Ordering and Prefix Properties,

restricting st-e-sequences satisfying K0 (0b) to represent computations.

Theorem 5.6 MIIOK(O) €* K,().

Proof: See appendix. 0

Thus, the expressive power of Tro is sufficient to encode a formula equivalent to K,().

5.3.2 Necessity

We now show that, with respect to our hierarchy of TL subsets, Tro is necessary to encode

K0,(O)-any TL subset weaker than or incomparable to Tro cannot be used to express a

formula equivalent to K,(4). This requires proving that no formula equivalent to K,(O) can

be expressed in Trio.

First, we prove a key lemma, that there is no formula 0 in Trio such that Mp 0E1Io

and K.,(true) are satisfied by the same set of substitutions for free variable o'. (Note that

true is an SNL specification satisfied by every network.) The final result-that there is no

formula Ko() in Tr-o such that MJK(0)] €# K,(o)-then follows directly. To prove

that there is no formula 4fo in Tr-do such that Mipfol and K,(true) are satisfied by

the same set of substitutions, we show, for every potential Oo, that there is some state-

sequence a" such that either Mip.0fI[o'/r] but not K(true)[o,/o'], or K,(true)[a/0o'] but
not Mhkaao/e.

Informally, the argument proceeds as follows. For every i-o in Trio there is some n > 0

(n is the nesting depth of Next operators in tpo) such that MipffoI can refer to states of

a beyond o'.n only by universal quantification (resulting from Restricted Always operators

in ¢Oo)" If no state-sequences a' satisfy M.A 1f[a'/ao'], or the only satisfying sequences

have all repeated states beyond a'.n, then it is straightforward to construct a sequence o,"

such that K,(true)[/a"] but not M. 0 j[o[or'. Otherwise, we construct a sequence ("

that does not represent a computation due to an irregularity beyond state au".n (e.g. the

length of a trace decreases from one state to the next). K,(true)[o/ 'lo1 does not hold, since

a" does not represent a computation; however, .Mlip-ol[a/o"] does hold, as long as o," is

constructed by rearranging states from a sequence al know to satisfy M f0]J['a"].

Lemma 5.7 For any formula i-o in Trio, there exists a state-sequence oa such that either

M1 6[0 1[a/ r] and not K,(true)[/o,'", or

K(true)[a / '] atd not M. 'fo[a'Ia'].

21

Proof: See appendix. 0

Theorem 5.8 There is no formula K50o(0) in Tri 0 such that M4K o()b) t K()

Proof: Consider an arbitrary formula K-50 (0) in Tr 0 . M Kf 0 (0)D J K,(0S) iff for all

trace-logic formulas 0 and state-sequences o,': Ml K(6, 0)j[I[u/'] iff ,(0)[o-/ao']. Suppose

' = true. By Lenuna 5.7, there exists a state-sequence o,' such that either

M JKo(true)][a/a'] and not Kf,(true)[a/'] or K,(true)[o/r'] and not

MAKa 0 (true)j[a ']. Hence M4Ko(true)l 0 K,(true) and consequently M11Ks(4'l)/

K,(0). 0

This result can be strengthened by refining the subset hierarchy. Rather than distin-

guishing only between Restricted and Unrestricted temporal operators-operators that may

be nested zero or arbitrarily many times, respectively-consider an infinite set of temporal

operators based on allowable nesting depth. For any z, 0 < z < oo, let DZ denote a version

of O restricted to operate over formulas with at most z nested o's; similarly define operator

oz. From these infinite sets of temporal operators we obtain an infinite hierarchy of TL

subsets. Given the results of Sections 5.3.1 and 5.3.2, it is easy to show that, with respect to

this refined subset hierarchy, Tro, is necessary and sufficient to express a formula equivalent

to K,(') [Wid87.

6 Hierarchically Structured Networks

Thus far, we have restricted attention to networks constructed directly from primitive pro-

cesses. A hierarchically structured network is a network in which the component processes

may be either primitive processes or sub-networks. For simplicity, assume that all process

and channel names are unique throughout the hierarchy. Our model and proof system easily

generalize to such hierarchically structured networks; our results remain unchanged.

Recall from Section 2 that our model of network computation is compositional-the set

representing the behavior of a network can be constructed from the sets representing the

behavior of the network's component processes. To adapt this model for hierarchically struc-

tured networks, we construct the set representing the behavior of a network by inductively

applying the construction to the network's components (assuming that the sets for the base

processes are given). Internal channels of a process implemented as a sub-network can be

hidden by simply eliminating all traces of the process's internal channels when constructing

the set for the network.

No modifications to the SNL inference rules are needed for hierarchically structured

networks. If a component process is implemented as a sub-network, the proof system itself

22

is used to verify a specification for the sub-network. Furthermore, by inductive application of

Preciseness Preservation Theorem 4.3, from precise specifications for base processes, precise

specifications for networks at any level of a hierarchy can be obtainel. Thus, our assumption

regarding availability of precise specifications for a network's component processes remains

valid. Finally, if one wishes to simplify specifications by hiding the existence of internal

channels in component sub-networks, this can be done using Consequence Rule 3.2.

Since our model and proof system adapt directly to hierarchically structured networks,

it should be clear that our fundamental results regarding expressiveness and completeness

are still valid. In fact, all definitions, examples, lemmas, and theorems of Sections 4 and 5

are left unchanged.

7 Conclusions

We have considered a simple trace-based proof system for networks of processes, SNL,

with a specification language and inference rules similar to those in most trace-based sys-

tems [Bro84, CH81, HH83, Hoa85, Jon85, MC81, NDGO86, Zwi88]. Through examples that

are single-process networks, we showed that SNL is incomplete because it is not expressive

enough to encode properties of computation that are needed to verify certain valid net-

work specifications. We then showed that axiomatization of Temporal Ordering and Prefix

Properties is necessary and sufficient to achieve relative completeness. The Temporal Or-

dering and Prefix Axioms characterize legal network computation; thus, we investigated

the expressiveness needed in any relatively complete system by considering logics that can

perform this function. We found that the power of an unrestricted temporal logic Always

operator is an upper and lower bound.

Since the expressive power of the Always operator-or of Temporal Ordering and Prefix

Axioms-is an essential component of a relatively complete proof system, it is interesting

to look at existing complete systems and identify how this expressive power is encoded. No

encoding is needed in [NDGO86], since the proof system is based directly on temporal logic.

However, as we have shown, the full power of temporal logic present in that proof system is

not necessary for proving safety properties. Several proof systems allow explicit reasoning

over all possible computations [Bro84,HH83,ZdRvEB85], as in the Extended Trace Logic

of Section 5.1. As we have seen, this gives at least the expressive power of temporal logic,

since the states of every computation can be directly and individually referenced.

In [ZdRvEB85], the incompleteness of the proof system in [MC81I is discussed and a rule

is suggested that would render it relatively complete. (A similar rule is proposed in [Ngu851.)

Informally, the rule asserts the following: Let 0 be a valid specification for a network N,

23

and let r be an interleaved trace of all communication events during any computation of

N. Then every prefix of r satisfies 0. This rule certainly captures our Prefix Property.

The Temporal Ordering Property is encoded as well. To see this, suppose specification

0 constrains two communication events cl.z and c2.y to occur simultaneously. Any trace

r including only one of cl.z and c2.y will not satisfy 0 and thus cannot correspond to a

computation of N. Suppose, then, that both events are included in T. Consider any prefix

r' C_ r that contains one event but not the other (such a prefix must exist). Then r' will

not satisfy 4, since only one of cl.z and c2.y appears in T
-. Hence no computation of N

can include either event.

In [Jon85J, the fact that valid specifications do not always follow from precise specifica-

tions is identified, but no actual solution is proposed. The author suggests adding a proof

rule of the form:
N sat 01

N sat 02

which can be applied whenever 61 and 02 are such that any network that always satisfies

01 will also always satisfy 02. No formal method is gihen, however, for determining when

a pair of specifications is a candidate for application of the rule. Our work has exactly

characterized those pairs that qualify and has isolated the expressiveness required of a logic

that can recognize them.

Appendix

Theorem 3.4 (Soundness of SNL) Let N be a network and 0 a specification such that

N sat 4 is a theorem of SNL. Then 4) is valid for N.

Proof: Since we are assuming validity of process specifications, soundness requires showing

that whenever the hypothesis of an SNL inference rule is valid, so is the conclusion.

e Network Composition Rule 3.1:

P1 sat 01, .. ., P. sat On

PiI"...11P- sat AiOi

Assume each 0i is valid for P, so K.j J= 4) for all K E CS(P) and j > 0. We must

show that K.j I= Ai 4, for all K E CS(N) and j _ 0, where N = P 111-.. IP,. Recall

that Proj(rc, P,) denotes the projection of r onto those channels of N incident to P.

Consider an arbitrary conjunct 0i, an arbitrary K E CS(N), and an arbitrary j _ 0.

By the definition of CS(N) (Section 2.1), Pro)(K, Pi) E CS(P); hence, by assumption,

24

Proj(, Pi).j 1= 4i. Therefore, K.j 1= Oi as well, since the traces that are removed

from K in the projection cannot be for channels mentioned in 0i. Since x;, j, and Oi

were chosen arbitrarily, we conclude that K.J = A 4i for all . E CS(N) and j >_ 0.

Thus Ai 4)i is valid for N.

Consequence Rule 3.2:

N sat 0i, 01l => 4)2

N sat 0)2

Let 4)1 be valid for N, so r.j 1= 4)1 for all K C CS(N) and j > 0. Then, by 0i = 02

and predicate logic, n.j = 4)02 for all x e CS(N) and j 2: 0. Thus 4)02 is valid for N.

Theorem 4.3 (Preciseness-Preservation) Let 4)i be a precise specification for Pi,

1 < i < n, and let N = PIll" IP,,. Then Ai 4i is a precise specification for N.

Proof: We must show that Ai 4)i satisfies both parts of Definition 3.5 of precise specifica-

tions.

1. (Ai 4), is valid for N.) Since the 4)i are precise specifications for their respective Pi,

they are valid. That Ai 4)i is then valid for N was proven in Soundness Theorem 3.4.

2. (If K. is any computation containing traces for the channels in N, and .j - Ai 4)i
for all j _ 0, then r E CS(N).) Consider any rK containing traces for the channels

in N in which K.J 1= Ai 4)i for all j > 0. Recall that Proj(x, Pi) denotes the projec-

tion of K onto thos2 channels of N incident to Pi. Since .) 1= Ai 4)i for all j > 0,

Proj(rc, P).j 1= 4O for all j _> 0 and 1 < i < n. Thus, by the preciseness of the 0i1,

Pro)(Kc,Pi) E CS(P), 1 < i < n. Then, by the definition of CS(Pi11 I...lP) (Sec-

tion 2.1), x E GS(N). CR

Theorem 4.6 (Soundness of ORDERING) If K. is a computation then K. 1= ORDERING.

Proof: Let r be any computation and suppose that the antecedent of ORDERING holds:

r= 0(Jc1J < z *c2l < y) for some z > 1, y >_ 0. We prove by induction that each

state of . satisfies (Jcl < z A Ic21 < y), so K. 1= (Iell < z A Ic21 < y) and therefore

i = ORDERING.

Base Case: We show that K.0 satisfies (Icil < z A lc21 < y). From z > 1 and computation

condition CCI (Section 2.1), x.0 satisfies Jcll < z. Then, by the antecedent of ORDERING,

r.0 also satisfies lc21 < y. Thus K.O satisfies (Icll < z A 1c21 < y).

25

Induction: Suppose that K..(i - 1) satisfies (Jell < z A Ic21 < y) for some i > 0. We show

that .i satisfies (Icll < z A 1c21 < y). Assume, for the sake of a contradiction, that K..i

satisfies (Ici z v lc2j > y). Then, by the antecedent of ORDERING, K.i also satisfies

(Jell _> zA 1c2> y). Since .(i- 1) satisfies (IcIl < zAlc2l < y), ifcl and c2 are distinct then

two channel traces change between r..(i - 1) and K.i, contradicting computation condition

CC4 (Section 2.1). If ci and c2 are the same channel, then z $ y, a channel trace increases

in length by more than one between K..(i - 1) and K..i, and condition CC3 is contradicted.

Hence r.i satisfies (jell < z A lc21 < y) and the induction is complete. 0

Lemma 4.9 Let K be any infinite sequence of states. . represents a computation iff

r 1= ORDERING A PREFIX.

Proof: [=:>] (If K represents a computation then K 1= ORDERING A PREFIX.) This

follows directly from soundness of ORDERING and PREFIX (Theorems 4.6 and 4.8).

[,] (If r 1= ORDERING A PREFIX then x represents a computation.) We prove the

contrapositive: If r does not represent a computation, then K .= ORDERING A PREFIX.

By the definition of a computation (Section 2.1), if r does not represent a computation then

i satisfies -(CCI A CC2 A CC3 A CC4). Formula -(CCI A CC2 A CC3 A CC4) can be

rewritten as

(-CC2) v (CC2 A -,CC1) v (CC2 A -CC3) V (CC2 A CC3 A -CC4). (6)

We show that if r satisfies any of the disjuncts in (6), then r does not satisfy both

ORDERING and PREFIX.

1. K does not satisfy CC2: Some trace in some state is not a prefix of the corresponding

trace in the subsequent state. Therefore PREFIX does not hold.

2. Kc satisfies CC2 but not CC1: Some trace is non-empty in the initial state, so let

lcl = z in K.0 with z > 1. Since CC2 holds, rK satisfies o] (1cl > z) and therefore

o (Ice <z jcl < 0). However K does not satisfy 0 (fcj < z A Icl < 0), so ORDERING

does not hold.

3. K satisfies CC2 but not CC3: Some trace increases in length by more than one between

states, so let Icl = z in some K.i and Jcl = z + y in K.(i + 1), with y > 1. Since

CC2 holds, r. satisfies 0 (fcl < z + I €* lcl < z + y). However r. does not satisfy

CO (Iel < z + 1 A IcI < z + y), so ORDERING does not hold.

4. r. satisfies CC2 and CC3 but not CC4: More than one trace changes between some

state and its subsequent state, so let Jell = z and fc21 = y in some K.i, and let

26

jcll = z + 1 and 1c2 = y + 1 in K.(i + 1). Since CC2 holds, r satisfies [](jcli <

z + 1 # 1c21 < y + 1). However r does not satisfy 0 (jcll < z + I A 1c2 < y + 1), so

ORDERING does not hold. 0

Theorem 5.6 M K0 (0)J t K(O).

Proof: Proving Mj[Ka(4)J -# K,(4') requires showing that for all trace logic formulas 4

and state-sequences or, MII K(4')D[o /'] iff K,(O)[lo/ ']. First, applying the definition of

M, we obtain17

(Vi: 0 < i: 0[e/a1.i])A

(Vij,z,Y: 1< i < m,1< j m,1 < z,0 < Y,i j V z $ Y:

(Vk: 0 < k: I(o.k)il < z * I(o.k)jl <y) =

(V/: 0 < k: l(a.k)il < z A I(a.k)jl < y)) A

(Vi, z,v: 1 < i < m, 1 _ z,v E V:

(Vk: 0 < k: ((a.k)i.z = v) * (VI: 0 < 1: (u.(k+l))i.z = v))).

Now consider an arbitrary trace-logic formula 4 and state-sequence 0'.

[K] If M'Ko(4)Jfalo'] then K,,(0)[a/u']:

We prove the contrapositive: the falsity of K,(O)[oa/cr'] implies the falsity of M Ko(()J[0/'1.

Suppose K,(O)[or/o'] is false, and consider the three conjuncts of K ,(O). The second con-

junct of K,,(4) is identical to the first conjunct of MK()J. Therefore, if the second

conjunct of K,(4')[a/o-'] is false then M[Ko(0)[o'/ o1] is also false. Suppose the first or

third conjunct of K,(O)[o/,'] is false. Then some trace in the initial state of o,' is non-

empty or some subsequent state does not extend at most one trace of the preceding state

by at most one element, i.e. a does not represent a computation. Note that the second

and third conjuncts of MIjK0 (o)] are derived directly from the Temporal Ordering and

Prefix Axioms, and recall Lemma 4.9: a state-sequence K represents a computation iff

r l=- ORDERING A PREFIX. Therefore, if a, does not represent a computation, then the

second or third conjunct of M[Ko()I[a l'l is false. We have considered all three conjuncts

of K,(O), so we conclude that if K(0)[a/ '/a is false then MI1Ko(4')J[o /o" is also false, hence

M IKo(4') [a /a] implies K,(O)[ao'/'].

[-=] If K,(0)[a/a/, then MJKo(0)I[a1,/ :

t"To understand the first conjunct, note that for any non-temporal formula 4,

[I = [,..../(o.0)....(.0),.2] = /

27 II I

We must show that each of the three conjuncts of MJJKo()I[a/a follows from K(0)[al/o'.
The first conjunct of MJKo(O)f[a/a'] is identical to the second conjunct of Kq(O)[a/a']
and therefore follows directly. The second and third conjuncts of MijKo(o)] encode axioms
ORDERING and PREFIX, respectively. By the definition of KE(O), if K(0)[a/a' I then
at must represent a computation. Recall from Theorems 4.6 and 4.8 that ORDERING
and PREFIX are sound, i.e. if a' represents a computation then at k- ORDERING A
PREFIX. Therefore, if K,(O)fa/a'] then a' represents a computation and consequently
satisfies the second and third conjuncts of M[Ko(0)J. Since each of the three conjuncts
of M K o (0)[Ia/a'J follows from K.(6)1c/o11, we conclude that Kf(O)[Oa/a') implies

Lemma 5.7 For any formula o5o in Trio, there exists a state-sequence a' such that
either

Mi -65o1[o/a'] and not K,(true)Ia/a'), or

K,(true)[/ a'] and not MI4'tkoJ[a/a'].

Proof: To prove this, we will need to consider the nesting depth of Nezt operators in
formulas of Trio. For any formula bo in Tro, let o-nesting(o-bo) denote the maximum
nesting of Next operators in 050" (For example, o-nesting(o (01 v o 0)) = 2.) Since every
formula 4,o has only a finite number of o's, o-nestin9(l0- 0) is a well-defined non-negative
integer.

Now, consider an arbitrary to in TrUo, and let n = o-nesting(pf-o). Three cases must be
considered. Case 3 is the general case, in which we use a a' known to satisfy Mtp5-ol to con-
struct a a" such that Mliplo[a/a"] holds but K, (true)[a/a"] does not. or" is constructed
by rearranging states of a' beyond state a'.n so that K,(true)(a/a" is false. However,
M.O oa [a/a" follows from Mlbol[a/a') since MItOU1 can refer to states beyond a.n
only by universal quantification. Cases I and 2 cover the situations in which there is no a'
satisfying MAtp6o 1 or every such a' has only repeating states after state a'.n.

Case 1. There is no a' such that M fo0 [a/a]:

We must then show that there is some a' such that K(true)[a/o']. One such a' is the
state-sequence in which every channel trace is always empty:

,' -- ((0, ..., 01, M0,..., I] W f, M , ...

Ml oPffo[a/a'] is false, since there there is no a' such that MJLt'oI[a/a'), but, by Defini-
tion 5.4 of K,(O), KI,(true)[a/a') is true.

28

Case 2. There exists a o" such that MA i-o'J[a/u'] and every such a' has only repeating
states after state a'.n. (Recall that n = o-nesting(V)o), so n > 0.) That is, for every o,'
such that MA pf 0 Jfo,/'J] and every i > n, o'.i = a'.(i - 1):

Consider an arbitrary a' such that MA4/'ol[a/o']. If K,(true)[a/u'] is false, we are done.
Suppose, then, that K,(true)[ao/o'] is true. Construct o," from a' by extending one trace
by one element between states o'.n and o,'.(n + 1):

a" (O r'.O, 0'.1, ..., o'.n, oa.n[(o'.n)I / (o'.n)l. (v)], ...)

for an arbitrary v E V. M[P50o[a/o'] is false, since a".(n + 1) 3 a".n. But, by
K.(true)[a/a' and the definition of K,(O/), K6(true)[a /a"] is true.

Case 3. There exists a a' such that MA tPT J[o./a'] and a' has a non-repeating state after
Oa.n (i.e. o,'.i $ o'.(i - 1) for some i > n):

Consider such a a', and consider the smallest i > n satisfying a'.i $ a'.(i- 1). By definition,

011 = (o,'.0, o'.1, . .. , o,'.n, a,'.(n + 1), ... , o"'.(i - 1), '.i, ...)

such that for all k, n < k < i, a'.k = a'.n, but a'.i $ a'.n. If K,(true)[a/a'] is false, we
are done. Suppose, then, that K,(true)[a/ol'] is true. Since a'.i $ a'.n, there must exist
a j and a v, I < j < m, v E V, such that a'.i = a'.n[(or'.n)j / (o'.n)j . (v)]. Let o-" be
constructed from a' by repeating state a'.n and inserting a copy of state a'.i between the
repetition:

a"= (a'.0, a'.1, ... , a'.n, a'.i, o'.n, o".(n + 1), a'.(n + 2), ...)

Note that a".(n + 1) = a'.i and a".(n + 2) = a'.n. Let z be the index of the last element in
channel trace (a".(n + 1))j. (We know (a".(n + 1)) is non-empty since a".(n + 1) = a'.i =
a'.n((a'.n)j / (a'.n)j . (v)].) K,(true)[a/ao"] is false because its third conjunct is contradicted
(recall Definition 5.4): (a".(n + 1)).z = (a'.i)1 .z = v, but (0".(n + 2)).z = (a'.n)j.z is
undefined. Therefore, by showing M IiP.,[a/a'1, the proof is complete.

Recall that we are assuming M4[toI[a/a'I. We prove MJP 0][a/lo"] by structural induc-
tion on Ofo"

Base Case:

P ffo = p(t1 ,. .. ,t,n): No temporal operators can appear in p(t,...,t,), so by the
definition of M (Table 1), the only references to a in M Ip(t,..., t,)J are references
to a.o0. Since a".O = a'.O, MI-5 0 1[a/a"] follows from M.AP4f.oa/a'].

29

Induction:

OU'5 = #' V 02: By MEI 0 1[a/a'] and the definition of M, M i#Pd[oio/'] or

M[#,2]j[/O'j]. If M.P1#]j[oj/'], then by the induction hypothesis, Mjhbd#[/7"].

If Mp 2][/Or'], then by the induction hypothesis, M[' 2 [a/o"]. Therefore

Mlii]1[a/,"] or M[021[a/a"] and consequently Mi'i V 421[or//'].

Offo = -',: By MI[Ofol[a/a'] and the definition of M, M 'l[ao/'] is false. Then

by the induction hypothesis, M4[[a/o"] is false. Therefore M-l[o-/ 01"].

*PE0 = (3z:: ip): By Ml4['Io[ro/'] and the definition of M, there exists a V E V

such that MtP[x4z/v]][u/c']. Then by the induction hypothesis, there exists a v E V

such that Mj/[zx/v]][o/a"]. Therefore MI(3z:: ')]I[/u"].

O*io = -50: We know MiftPl[r/o']. Therefore, by the definition of M and sub-

stitution, Mjf4i][o'/o'[i..]J for all i > 0. Since 5 is the restricted version of Always, 1'

contains no temporal operators. Thus the only references to a in Milkp] are references

to a.0, and consequently M.j['/[ur'[i..]] is equivalent to MIiJ[o.0/o'.i]. Now, by the

definition of or", for all or".k, k > 0, there exists some a".i, i > 0 such that o".k = ".i.

Therefore, MjtPj[u.0/o".k] for all k > 0 follows from Mjtij[ou.0/O!'.il for all i > 0.

Hence MI bj[a/[,1[k..]] for all k > 0 and MI[p1kao1.

* Oo = o 0: We know M.A4 [o[/o]. Since o-nesting(o tp) <_ n, by the definition of

M every occurrence of a, in M 4o 4', is either

1. o,.k, for some 0 < k < n, resulting from at most n nested Next operators, or

2. o!.(k + i), for some some universally quantified i and some 0 < k < n, resulting

from a 5 operator nested within at most n o operators. (No temporal operators

can be nested within I, since 5 operates only over non-temporal formulas.)

We need to show M oo,[o./o"]. Since Mlot][o/ur'], we can prove MlAotp[or/o'"] by

showing that substitutions [o/o"] and [o/u"] yield the same values for all occurrences

of o, in M [o 40J. Consider the two types of occurrences of o-, as defined above:

1. or.k, 0 < k < n. By the definition of o", or".k = or'.k for all 0 < k < n.

2. o.(k + i), i universally quantified and 0 < k < n. Under substitution [cr/ur'],

the o'.(k + i)'s range over the set S,, = {o'.k, o-'.(k + 1), a'.(k + 2),...}. Under

substitution (a'/o", the o'.(k + i)'s range over the set So,, = {o".k,0".(k + 1),

Or".(k+2),...). By the definition of o,", S,, = S,,# for every possible k, 0 < k < n.

Therefore, from Mla [l/a '] we conclude Mlo il[a/lo'].

30

Acknowledgements

We are grateful to Prakash Panangaden for many useful discussions regarding the results

described in Section 5.

References

(Apt81] K.R. Apt. Ten years of Hoare's logic: a survey - part I. ACM Transactions
on Programming Languages and Systems, 3(4):431-483, October 1981.

[BA81] J.D. Brock and W.B. Ackerman. Scenarios: a model of non-determinate com-
putation. In Formalization of Programming Concepts, Lecture Notes in Com-

puter Science 107, pages 252-259, Springer-Verlag, Berlin, 1981.

[Bro84] S.D. Brookes. A semantics and proof system for communicating processes.

In Logics of Programs, Lecture Notes in Computer Science 164, pages 68-85,

Springer-Verlag, Berlin, 1984.

[CH81] Z.C. Chen and C.A.R. Hoare. Partial correctness of communicating sequential
processes. In Proceedings of the IEEE International Conference on Distributed
Computing Systems, pages 1-12, Paris, April 1981.

[Coo78] S.A. Cook. Soundness and completeness of an axiom system for program
verification. SIAM Journal on Computing, 7(1):70-90, February 1978.

[HH83] E.C.R. Hehner and C.A.R. Hoare. A more complete model of communicating
processes. Theoretical Computer Science, 26:105-120, September 1983.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Engle-

wood Cliffs, New Jersey, 1985.

[Jon85] B. Jonsson. A model and proof system for asynchronous networks. In Pro-
ceedings of the Fourth ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pages 49-58, August 1985.

[Lam77 L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans-
actions on Software Engineering, SE-3(2):125-143, March 1977.

[MC81] J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Transac-
tions on Software Engineering, 7(7):417-426, July 1981.

IMP811 Z. Manna and A. Pnuel. Verification of concurrent programs: the temporal
framework. In R.S. Boyer and J.S. Moore, editors, The Correctness Problem in

Computer Science, pages 215-273, International Lecture Series in Computer

Science, Academic Press, London, 1981.

[MP821 Z. Manna and A. Pnueli. Verification of concurrent programs: a temporal

proof system. In Proceedings of the Fourth School on Advanced Programming,

pages 163-255, Amsterdam, June 1982.

31

[NDGO86) V. Nguyen, A. Demers, D. Gries, and S. Owicki. A model and temporal proof
system for networks of processes. Distributed Computing, 1(1):7-25, January
1986.

[Ngu85] V. Nguyen. The incompleteness of Misra and Chandy's proof systems. Infor-
mation Processing Letters, 21:93-96, August 1985.

[Sch67] J.R. Schoenfield. Mathematical Logic. Addison-Wesley, Reading, Mas-
sachusetts, 1967.

[WGS87] J. Widom, D. Gries, and F.B. Schneider. Completeness and incompleteness of
trace-based network proof systems. In Proceedings of the Fourteenth ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pages 27-38, January 1987.

[Wid87 J. Widom. Trace-Based Network Proof Systems: Expressiveness and Com-
pleteness. PhD thesis, Cornell University, Ithaca, New York, May 1987.

[Wol8l] P. Wolper. Temporal logic can be more expressive. In Proceedings of the
22nd Annual Symposium on Foundations of Computer Science, pages 340-

348, October 1981.

[ZdRvEB85] J. Zwiers, W.P. de Roever, and P. van Emde Boas. Compositionality and con-
current networks: soundness and completeness of a proofsystem. In Proceed-
ings of the 12th International Colloquium on Automata, Languages, and Pro-
gramming, Lecture Notes in Computer Science 194, pages 509-519, Springer-
Verlag, Berlin, 1985.

[Zwi88] J. Zwiers. Compositionality, Concurrency, and Partial Correctness: Proof
Theories for Networks of Processes, and Their Connection. PhD thesis, Eind-
hoven University of Technology, Eindhoven, The Netherlands, February 1988.

32

